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Abstract-An analytical solution for the transient temperature distribution in a wide Bat plate and in a 
cylindrical rod of finite length moving at a constant speed and subjected to convective heat transfer at the 
surface is obtained. The analytical solution is obtained as an infinite series. However. inclusion of the first 
25 terms of the series was found to bc sufficient to obtain a converged solution in most cases. The analytical 
solutions are compared with previously obtained numerical solutions for this moving boundary problem. 
Excellent agreement between the analylical and numerical results is obtained, indicating the importance 
of the analytical solution for the validation of numerical schemes. The variation of the temperature field 
within the material with time is investigated. Even though this is one of the first attempts to solve, 
allalytic~l~y~ the problem of a ~llite-length moving material subjected to surface heat transfer, the analytical 
solutions are found to be of limited use at moderate or large times. However, at very small times, following 
the start of the process, numerical solutions are often quiet inaccurate. Then the analylical results are 

particularly useful. The versatility and ease of application of the numerical method are discussed. 

1. INTRODUCTION 

A VERY common circumstance encountered in several 
manufacturing processes is that of a moving plate or 
cylinder subjected to heat transfer at the surface. In 
the extrusion of metals. plastics or food materials, for 
instance, the material emerges from the extruder and 
cools by means of convection and radiation as it 
moves away from the die [I, 21. Similar situations arise 
in hot rolling, wire drawing, glass fibre drawing, and 
continuous casting [3, 41. Tn most cases, the time- 
dependent thermal field in the material, following the 
onset of the process, is of interest. As the length of the 
fed material increases the process generally reaches a 
‘pseudo-steady’ state condition [5]. In several 
extrusion and crystal growth processes, however, the 
process may not fast long enough to reach steady state 
and the transient problem is of particular importance. 

A sketch of the process under ~onsideratiotl is 
shown in Fig. 1. At time T’ = 0, the length of the 
cylinder or pfate is zero and after a finite time z’, the 
instantaneous length, 1, of the cylinder or plate moving 
at a constant speed of U, is given by /(z’) = U,z’. The 
increment in the length over a finite time interval AT’ 
is then U,Az’. Figure I shows the moving boundary 
of the material at three time intervals. Jafuria and 
Singh IS] have studied this problem numerically with 
an assumed heat transfer coefficient, h. at the surface. 
They employed finite-difference methods to discretize 
the governing equations, and solved the problem, 
using the Gauss-Seidef iterative procedure [6]. Ana- 
lytical solutions for the steady state problem of a 

stationary cylinder or plate of given length, subjected 
to appropriate boundary conditions at the ends and 
the surface, are available in literature 171. Some sofu- 
lions are also available for the steady state case of 
an infinite moving cylinder or plate with lumping in 
radial/transverse direction [S]. However, there is no 
analytical solution available for the transient case of 
a moving material of finite length, subjected to surface 
energy transfer. The moving boundary considerably 
complicates this case. The motivation of the present 
work is to obtain an analytical solution to this tran- 
sient problem. With the analytical solution in hand, 
different numerical schemes may be validated and 
checked for accuracy. The numerical approach is 
based on the assumption of unchanged fcngth over a 
finite time step, AT’. The results are not expected to 
be very accurate at small times, unless the time step 
is taken as extremely small. On the other hand, the 
analytical result, obtained as a series solution, is the 
exact solution and is thus correct at all times, provided 
an adequate number of-terms in the series is employed. 

The present work considers the heat transfer from 
a finite-length moving cylindrical rod, or a flat plate. 
The governing parameters are the cylinder speed and 
heat transfer coefficients from the end of the cylin- 
der/plate and from the side. These physical quantities 
lead to two main dimensionless variables : the Peclct 
number, Pe, and the Biot number. Bi. defined later in 
the paper. For the feasibility of the analytical solution 
the Biot numbers are assumed to be known, that is 
the conjugate fluid flow problem is not considered and 
only conduction in the solid is investigated. When 
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NOMENCLATURE 

Bi surface Biot number, hR,,/k Y dimensionless transvcrsc coordinate 
Bi, end Biot number. lI,R,,:/< distance from hat plate centerline. ~‘,1 R,, 

/I convective heat transfer cocfficicnt from ; axial coordinate distance 

the surface Z dimensionless axial coordinate distance. 

4 convective heat transfer coefficient from --I&,. 
the end 

I . 0 Bessel function of first kind and of order 
0 

Greek symbols 

J, Bessel function of tirst kind and of order ’ 
thermal difusivity 

I II 
(T-T,) 

dimensionless temperature, ~~~ 
/, thermal conductivity (T,>-T,) 

I instantaneous length, L’,s’ : dimensionless transformed axial 

L dimensionless instantaneous length, I,! R,, coordinate. Z- (Pc)z 

P<J Pcclet number, Il,~,,/cc T’ physical time 

I radial coordinate distance for cylinder T dimensionless time, rt’l’Ri 

R dimensionless radial coordinate distance (f, ‘pseudo-steady’ part of the transient 

for cylinder, I’; R,, solution 

4, radius of the cylinder or half-width of the r!’ ‘pseudo-transient part of the transient 

plate solution. 

t dimensionless transformed time x 
U, cylinder or plate speed Subscripts 
.t’ transverse coordinate distance from flat x ambient medium 

plate ccnterlinc 0 base of cylindrical rod or flat plate. 

the Biot number is small. the cylinder/plate can be developing appropriate numerical schemes. The case 

considered as lumped in the transverse direction. giv- of implementing the numerical solution and its ver- 

ing rise to a one-dimensional problem. The solution satility in a wide range of practical problems are also 

to this simpler circumstance is also considered here. discussed. 

The results obtained by the analytical solution are 

compared with the numerical results obtained by Jalu- 
ria and Singh [5]. A very close agreement is obtained at 
moderate or larger times. However. large differences 

2. ANALYTICAL SOLUTION FOR THE 2D 

TRANSIENT PROBLEM 

arise at small times following the start of the process. 2. I C~~litzdrical rod 
The analytical results are found to be valuable in The governing equation for transient conduction in 
providing accurate results at short times, indicating a cylindrical rod moving at a speed U, may be written 
quantitatively the basic trends in the transient trans- for constant material properties as : 
port and in providing a means for validating and 

The following non-dimcnsionalizations arc employed 
to simplify and generalize the governing equations : 

R = r/R,, 
U,RO 

Pe = __ 
a 

(2) 

where R, is the radius of the cylinder, r,, is the tem- 
perature of the base of the cylinder. T, is the ambient 
temperature, and /I and 11, are the convective heat 
transfer coefficients at the surface of the cylinder and 

FIG. I. Schematic diagram of the transient process for a at the end, respectively. The instantaneous length I of 

material moving continuously. the cylinder after time r’ is given by I= U,z’. With 
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this non-dimensionalization the governing equation 
becomes : 

The following transformations may bc employed to 
simplify the equation : 

t = z- (Pc)z = Z-L; t = z. (4) 

Then equation (3) becomes : 

(5) 

The initial and boundary conditions may be written 
in terms of thcsc transformed non-dimensional vari- 
ables as 

O(<,R,O) = 1.0 

O(-L&t) = 1.0; g (O,R,t) = -Bi,_O(O, R,t) 

(10 
^I 

,,(;.O,t) = 0.0; $(;,l,t) = -fIio(&l,t) (6) 

where Bi and Bi, are defined in equation (2). 
Since the boundary condition at < = -L is non- 

homogeneous, it must be removed to make the prob- 
lem admissible to a solution based on the separation 
of variables. Therefore, the principle of superposition 
may be used. Noting that the problem has a ‘pseudo- 
steady’ solution (that is in the transformed system. 
(t,R,t) the problem has a solution, that is independent 
oft, even though this solution depends on l which is 
a function of real time, t; hence the name ‘pseudo- 
steady’) as t + m, the following superposition is 
employed : 

Qc’&) = $(5,Rt) +&t.R) (7) 

such that $((,I?) satisfies the following equation : 

with the following boundary conditions : 

4(-L,R) = 1.0; $(O,R) = -BiL#(O,R) 

$0) = 0.0; :$(:.I) = -Bi&<,l). (9) 

That is, 4 is the ‘pseudo-steady’ solution of the equa- 
tion (5) with the boundary conditions given by equa- 
tion (6). Therefore, $ must satisfy the following equa- 
tion : 

with the following initial and boundary conditions : 

ti(i’JW = 1.0-4(&R) 

I&L,R.t) = 0.0: :^; (O,R,t) = - Bi,$(O,R,t) 

$.O,t) = 0.0; $,l,t) = -Bi$(&l,t). (II) 

The solution of equation (8) with the boundary 

conditions given by equation (9) can be obtained by 
the separation of variables. Assuming #J(~,R) = 
Z,(<)R,(R), the following sets of ordinary differ- 

ential equations (ODES) are obtained : 

d’Z, 

d52 
-1?z, = 0 

2 (0) = 0.0; 

$$I) = -BiR,(l); 

$0) = -Bi,Z,(O). 

(12) 

(13) 

(14) 

The solution to equation (12) in conjunction with the 
boundary conditions, equation (14) gives : 

R,,(R) = 4JoGnR) (15) 

Jo being the Bessel function of the first kind and of 
order 0. From the boundary condition, equation (14), 
&(i,,R)(R = 1) = -BiJ,(A,R)(R = I). Using the 
properties of Bessel functions, the following equation 
may be written from which the roots i, can be ob- 
tained : 

i.,,J, (A,,) - BiJ&,,) = 0. (16) 

From equation (I 3). the solution is obtained as : 

Z,,,(r) = C,,,e”~i+Cz,,e~“,~‘. 

Using the boundary condition from equation (I 4) Cz,, 
is eliminated to give 

Z,,j(<) = C,, e”,,i+ berg]_ 
L 

(17) 
,! L 

Therefore, using the product solution, 4(&R) can be 
written as : 
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?I = I 
&,i + A,, + Bi, 

---e-“,f’ J”(i.,,R) (18) 
I 

This gives the following complete solution for 4 as : 

A,, - BiL 

where a, = A,C,. But c$( - L,R) = 1 .O, so that : 

1.0 = i: u,, e 
I 

Jdk, 4 
0 = I 

qb(t,R) =2 c . Ji 
,, _ , (n,f + Bi’)J,l(jz) 

J&A (19) 

Therefore, 

S’ RJ&,R)( I)dR 

= “i ~~~ ~~_~~ 

s 
RJ;(i,,R)dR 

0 

2Bi 

= (A;+ Bi*)J&,) 

where the values of I.,, [n = 1,2,3,. . .] are given by the 
roots of the equation (16). 

Now equation (10) is solved with the boundary 
conditions given by equation (1 1). Again. a product 
solution of the form t+b(<,R,t) = Z2(<)R2(R)Tl(f) is 
employed and when this is introduced in equation 
(lo), we obtain the following ODES : 

Z 
(a) Isotherms near 2 = 0 for a flat plate at z = 3.0 

10 term6 

------- 15terms 

------- 20terms 

------ 25 terms 

___ 30terms 

0.25 - 

0.00 ’ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Z 
(b) Surface and mid-plane temperature for T = 3.0 for a flat plate 

FIG. 2. (a) Isotherms and (b) temperature distributions in a flat plate, using a finite number of terms in 
the analytical solution for Pe = 0.2, Bi = Bi, = 5.0. 
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FIG. 3. Comparison between analytical and numerical results 
for the transient temperature distribution in a one- 
dimensional moving cylindric81 rod at PP = 0.2, with 

Bi=Bi,=O.i. 

with the following conditions : 

gf (0) = 0.0; z(1) = -BiR,(I); 

d$(O, = -&Z,(O); Z,(-L) = 0. (23) 

The solution to equation (20) is 

ZZ,(~ = .%cos (P,<) f&sin (P,J). 

B, can be easily eliminated by the use of the boundary 
conditions given by equation (23). Thus, 

zk(Q = A-sin&(if+L) 
sm (PA) 

where the roots p, are to be obtained from 

pmcot (pL,L) = - BiL. (24) 

Also since, equation (21) is of the same form as 
equation (12) and since both the equations have simi- 
lar boundary conditions, the solution to equation (21) 
is of the same form as that to equation (12), i.e. 

R&R) = B~J~(~~R) (25) 

where vk is given by 

v,J, (vk) - BiJ,(vk) = 0. (26) 

The general solution to equation (22) is 

Tmk(t) = Cmk e.“(d+vllr, (27) 

Therefore, the product solution can be written as : 

where a,k = A,B,C,,. Using the initial conditions 
from equation (1 l), we get 

This is a double Fourier series from which the solution 
can be obtained as : 

atnk = 

(29) 

This equation is difficult to evaluate analytically, but 
can easily be determined by numerical integration. 
Thus the solution O(<,R,t) is obtained by combining 
equations (19) and (28) and can be written as 

X J&A 

where A,,, 1;1, and vk are the roots of equations (16), 
(24) and (26) respectively, while anlk is obtained from 
equation (29). 

2.2. Flat plate 

The derivation of the temperature distribution for 
a moving flat plate of large width is very similar to 
that for a moving cylinder. The governing equation 
for the 2D transport in the case of a wide fiat plate is 

Using the same non-dimensionalization as before, 
with Y = y/Ro, where R, now is the half-width of 
the flat plate, and employing the same co-ordinate 
transfo~ation as in (4) the equation becomes : 

a6 a% a28 
z ==&- p (32) 

with the same boundary conditions as those given by 
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(a) 5 = 3 (axisymmetric) 
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Numerical [5] - coarse grid (51 x 21) 

-------- Analytical 

(b) T = 10 (axisymmetric) 

FIG. 4. Comparison between analytical and numerical results for the transient isotherms (using a coarse 
grid for the numerical case) in a cylinder moving at PC = 0.2, with Bi = Bi, = 5.0 at (a) T = 3.0 and 

(b) t = 10.0 

equation (6). Again the solution is obtained by the 
superposition of the ‘pseudo-steady’ solution +(t, Y) 
and ‘Y(<. YJ). where the equations and boundary con- 
ditions are similar to equations (8). (IO), (9) and (11). 

X 

Again a product solution for +(<, Y) is sought in the 
form Z,(t) Y,( Y). This, along with the boundary con- . . 

cos (i, Y) (33) 

ditions, gives the following solution for $(i;, Y) : where n,, now is given by the following equation : 

4(r,y) = 2 i: 
sin I.,, 

n = , (A, + sin i, cos A,) 

i, tan (i,) = Bi. (34) 

Using this solution for 4, the equation for + is solved 
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Q) 0.50 

0.25 

0.00 
a 

Numerical [5] - coarse grid (16 x 21) 
_____.____ Analyticat 

0 
0.10 0.20 0.30 0.40 0.50 0.60 

Z 
(a) axial and surface temperatures at 5 = 3.0 (axisymmetiic) 

Numerical [5] - ccwse grid (51 x 21) 

__._______ Analytical 

0.0 0.5 1.0 1.5 2.0 

Z 
(b) axial and surface temperatures at T = 10.0 (axisymmetric) 

FIG. 5. Comparison between analytical and numerical results for the transient centerline and surface 
temperature distributions (using a coarse grid for the numerical case) for a cylinder moving at Pe = 0.2, 

with Bi = Bi, = 5.0 at (a) z = 3.0 and (b) T = 10.0. 

as a product solution Z(t) Y2( Y)T,(t), resulting in the 
following equation : 

where P,~ is the solution of the equation (24), while vk 
is obtained from the equation : 

v,tan (vl) = Bi. (36) 

Using the same procedure as before for a double Four- 
ier series, the expression for anCl is obtained as : 

u,,,i - 

cos* (Vk Y) 
sin’i,,(5+L) 

sin’ (p,.L) 
dYd( 

(37) 

Therefore, finally putting everything together, the 
complete solution for the time-dependent temperature 
distribution in a moving (wide) flat plate of finite 
length can be written as : 

O(5,YJ) = 2 i: 
sin A.,, 

,, = , (2” + sin i, cos 2,) 
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0.00 0.15 0.30 0.45 0.60 

~ Numerical [5] 2 
______._ Analytical 

(a) ‘I = 3 (axisymmetfic) 

1.00 

0.75 

oc 0.50 

0.25 

0.00 
0.0 0.5 

~ Numerical [5] 
- - - Analytical 

_I 
1.0 1.5 2.0 

Z 

(b) T = 10 (axisymmetric) 

FIG. 6. Comparison between analytical and numerical results for the transient isotherms (using a line grid 
for the numerical case) in a cylinder moving at Pe = 0.2, with Bi = Bi, = 5.0 at (a) 7 = 3.0 and (b) T = 10.0. 

x .~ cos (A”” Y) 

where A,, p(m and vk are the roots of equations (34), 
(24) and (36), respectively, while amk is obtained from 
equation (37). 

3. ANALYTICAL SOLUTION FOR THE 1 D 

TRANSIENT PROBLEM 

When the Biot number Bi is small, radial tem- 
perature uniformity can be assumed. The non-dimen- 

sional governing equations for a cylinder with radial 

lumping is obtained as : 

(39) 

Following the transformations given by equation (4), 
the equation (39) reduces to 

do 20 
27 = F -2BiO 

with the initial and boundary conditions given by 

0(&O) = 1.0; O(-LJ) = 1.0 

and 

20 
Fj (0~) = - Bi,B(O,t). (41) 

Since, the boundary conditions are non-homo- 
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0.00’ 1 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 

Z 
(a) axial and surface temperatures at ‘(: = 3.0 (axisymmetric) 

Numerical [5] 
- - - Analytical 

0.0 0.5 1.0 1.5 2.0 

Z 
(b) axial and surface temperatures at r = 10.0 (axisymmetric) 

FIG. 7. Comparison between analytical and numerical results for the transient centerline and surface 
temperature distributions using a fine grid for the numerical case, for a cylinder moving at Pe = 0.2, with 

Bi = Bir = 5.0 at (a) r = 3.0 and (b) t = 10.0. 

geneous, the principle of superposition has to be used. 
Noting that the problem has a ‘pseudo-steady’ solu- 
tion as t -+ co, the following superposition is em- 
ployed : 

@LO = tic54 +4(t). (42) 

Here, 4(t) gives the solution for the ‘pseudo-steady’ 
part of the problem 

d24 
dr’-2Bi4=Q (43) 

with the given boundary conditions 

4(---L) = 1 and g(O) = -B&&O). (44) 

This is an ordinary differential equation, for which 
the following solution is obtained : 

Also, $(t,t) is given by 

a* av 
-zz 2 -2Bit+b 
at at (46) 

with the following initial and boundary conditions : 

lj(<,O) = 1.0sqb(<); l+b(-&I) = 0.0 

and 
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~ Numerical [5] 
Z 

-------- Analytical 
(a) t = 3 (flat plate) 

~ Numerical [5] Z 
-------- Analytical 

(b) r = 10 (flat plate) 

FIG. 8. Comparison hctween analytical and numerical results for the transient isotherms in a flat plate 
moving at PLY = 0.2. with Bi = Bi, = 5.0 at (a) T = 3.0 and (b) T = 10.0. 

a+ 
Ff (04 = .- BiL$(OJ) (47) 

so that, when the governing equations and the bound- 
ary conditions for $(i:,t) and Cp(<) are added, they 
yield the equation for O(t,r). Equation (46), with the 
given boundary conditions, equation (47), is not 
admissible to a solution by the method of separation 
of variables. To make the solution feasible, the fol- 
lowing transformation is employed 

J/(<,t) = zr(;,f)e-I”“. (48) 

With this t~dnsformation, equations (46) and (47) 
reduce to 

For solving equation (49), separation of variables is 
used, with u(<*t) = X,(&,(t), which when substituted 
in equation (49) gives 

dT, 
dr = 

-A%,. 

r?u az14 The solution to equation (51), with the boundary 

?I _ (y2 (49) conditions given by equation (50), can be written as 

with the following initial and boundary conditions : X,,,,(t) = &sinL(5+L) (53) 

24(&O) = 1.0-@(S); l(-LJ) = 0.0 where i.,,, are the roots of the equation 

and 
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0.00 1 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Z 
(a) axial and surface temperatures at 1: = 3.0 (flat plate) 

FIG. 9. Comparison between 
temperature distributions for 

(b) axial and surface temperatures at r = 10.0 (flat plate) 

analytical and numerical results for the transient midplane and surface 
a flat plate moving at Pr = 0.2, with Bi = Bi,, = 5.0 at (a) T = 3.0 and 

(b) r = 10.0. 

/I,,, cot (i,,L) + BiL = 0. 

The general solution for equation (52) is 

(54) 

Therefore, using u = X,z,, the general 
u([,t) is : 

z 
u(0) = C B,,sini,(<+L)e 

m=O 

(55) 

solution for 

I’! m (56) 

where B, = A,C,. The coefficient B, can be obtained 
from the initial condition. Since u(c,O) = l.O-$(t), 
B, can be written, using the Fourier series properties, 

as the following integral : 

11 .O - 4(5)1 sin U5 + L) dt 
(57) 

The analytical expression for B, can be determined 
by carrying out the integration in the equation (57). 
However, the resulting expression is lengthy and cum- 
bersome. So the integration is done numerically, to 
finally give the solution $(<,t) as 

$(<,t) = f B,sini,(5+L)e~(“:+28’)‘. (58) 
m=O 

Therefore, using equation (42), the temperature dis- 
tribution O(<,t) can be written as 

+ f. B,sin~,(5+L)e~(“:+28’)’ (59) 
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where 3.,, and B,,, are given by equations (54) and (57), inclusion of the first 20 terms was found to be sufficient 
respectively. for a convcrgcd, accurate, solution. 

4. RESULTS AND DISCUSSION 

Some of the transient results obtained from the 
analytical solutions arc compared with those obtained 
numerically by Jaluria and Singh [S]. In the numerical 
scheme, the length L was taken as unchanged over a 
finite time increment A7 and was then taken at the 
increased value for the next time step, as shown in 
Fig. I. The Gauss--Seidcl iterative procedure was 
employed. in conjunction with the Crank-Nicolson 
scheme. to obtain the temperature distribution at each 
time step. For the an~~lyti~~l solution, numerical inte- 
gration was carried out for finding the coef?icients u,,;~ 
and B,,, for the two-dimensional and one-dimensional 
cases, respectively. Romberg integration is used to 
determine these coefficients [6]. Also, to find the roots 
i,,. [I,,~ and I*~ for the two-dimensional cases. and i “,,, 
for the one-dimensional case, the Newton-R~~phsoii 
root solving method is used [6]. Since the analytical 
solution is the summation of an infinite series. only a 
finite number of terms arc taken for obtaining the 
analytical solution and the effect of the number of 
terms on the analytical solution is determined. 

The comparison of the tinie-depelldeilt t~lnperature 
distributions in a cylinder for the one-dimensional 
transient case. at Hi = Bi, = 0.1 and PC = 0.2, with 
the numerical results obtained by Jaluria and Singh [5] 
is shown in Fig. 3. An cxccllent agreement is obtained. 
lending support to the numerical scheme used. 

For the axisyli~metric cast, the tr~insient isotherms 
arc obtained from the analytical solution. and are 
compared with the numerical results. When a rela- 
tively coarse grid (5 I x 2 I for 7 = IO and I6 x 2 I. for 
z = 3) is used, the comparisons of the isotherms (Fig. 
4) as well as of the surface and axial temperature 
distribLltions (Fig. Sf, show only a slight dis~repaIi~y 
in the surface tcmperaturc near the slot from where 
the material emerges. For a finer grid (251 x I01 grid 
and 76 x 101 for the aforcmentioncd cases, respec- 
tively) an extremely close agreement is observed. as 
seen from Fig. 6. Also the transient axial and surface 
t~iiiperatLires arc shown in Fig. 7. showing excellent 
agreement. For a coarser grid. the difference between 
the analytical and numerical results was found to 
incrcasc. 

It is found that the solution of the ‘pseudo-steady’ 
circumstance is very close to the actual solution. Thus, 
the effect of the ‘pseudo-transient’ terms. which are 
Y(c,R,t) or Y(<.Y,r) for the two-dimensional cases 
and Y(<,t) for the one-dimensional case. is relatively 
small for 7 > 0.2. which is considered for most of the 
results prcscntcd here. So unless the solution is needed 
for very small time. that is when T is Icss than 0.2. a 
‘pseudo-steady’ approximation can bc used, to obtain 
the analytical solution more easily. This also indicates 
why the numerical solutions that assume a quasi- 
steady behavior yield accurate results at large time. 

The isotherms and the surface and mid-plane tem- 
pcraturcs for the typo-dimensional fiat plate cast. tak- 
ing a finite number of terms for the analytical solution, 
are shown in Fig. 2. The main difference in the results, 
due to a different number of terms being included in 
the solution, is found near the slot from where the 
material emerges. especially near the surface. It is 
found that, when the number of terms used is more 
than 25, the solution converges, thal is the solution 
does not change appreciably when an additional num- 
ber of terms is used. For instance, when 30 terms arc 
used. the difference from the results obtained with 25 
terms is less than 0. I %. Therefore, for all the results 
obtained from the analytical solution. the number of 
terms is taken as 25. From a similar study of the 
axisymmetric problem, it was found that the number 
of terms required to get a converged solution is also 
25 in that case. For the one-dimensional case, the 
‘pseudo-steady part’, 4(t). does not consist of a series 
solution, only the ‘pseudo-transient’ part. $(<.t), 
does. Again, except for very small times. the con- 
tribution of the latter term is smaii. and even then the 

Another important observation can be made from 
Fig. 4. It is observed from the insets in Figs. 4(a) and 
(b). showing the results at small Z, that the dis- 
crepancy in tctnpe~~tllre near the slot is considerably 

more for T = 3 as compared to that for 7 = IO. As 
mentioned earlier, the numerical solution assumes the 
length of the cylinder to remain unchanged over a 
time step. As, and, therefore. at small time. unless the 

grid is considerably more fine, the numerical solution 
is not very accurate. The error, indicated in the inset 
of Fig. 4(a) is even more severe for smaller times. 
When a finer grid is used, however, as indicated in 
Fig. 6, the discrepancy between the numerical solution 
and the analytical solution diminishes, even though it 
is still higher at smaller times. In principle. at small 
time the numerical solution can be obtained accu- 
rately if a large number of grid points are used. How- 
ever, for very small time, and consequently very fine 
grid, this might introduce considerable amount of 
roundoff error, in addition to consuming large 
amount of CPU time. Therefore, it can be concluded 
from the previous discussion that the analytical 
method is a useful tool to check the accuracy of the 
numerical scheme and to provide results at short times. 

The transient isotherms for the Rat plate arc shown 
in Fig. 8, again showing very close agrecmcnt with the 
numerical solution using fine grid (151 x41 grid for 
z = IO and 46 x 41 grid for T = 3). The transient mid- 
plane and surface temper-~~turcs are shown in Fig. 9. 
Again, except for the surface temperature near the 
slot, the agreement between the analytical and the 
numerical results is excellent. 

For all the cases considered here, the analytical 
solution can be used to compute the temperature dis- 
tributions at small time accurately, but, because of the 
assumption of constant length over a time increment, 
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AZ, the numerical solution for small time is somewhat 
in error, as discussed before. 

Even though the analytical solution obtained here 

is a compact expression, it also requires some com- 
putational effort to determine the roots L,,, vkr pnir etc. 
Also, numerical integration is needed to determine 
the coefficients anlhr B ,,,, etc. On the other hand, the 
numerical solution is much easier to implement, even 
though the CPU time required to carry out the necess- 
ary numerical calculations required for the analytical 
solution for the two-dimensional cases is at least 20 
times less than that required for the numerical solu- 
tion. 

The analytical solution is possible only because of 
the assumption of constant heat transfer coefficient at 
the surface and at the end of the moving cylin- 
der/plate. In real circumstances, these coefficients are 
not known. Therefore, in general, a complete numeri- 
cal study considering the conjugate transport in the 
fluid and in the solid must be carried out to solve the 
full, elliptic, problem. This cannot be done analyti- 
cally. unless some severe (and unreal) assumptions 
are made. It must also be mentioned that, even though 
there are a number of numerical solutions available 

for an infinite moving plate [9, lo] or cylinder [ll], 
with conjugate fluid transport from its surface, there 
are no numerical results available for the case pre- 

sented here, involving a finite length and a moving 

boundary, that includes conjugate fluid transport. 

However, the analytical solution presented here may 

be useful in developing a suitable numerical scheme 

for the conjugate problem. 

5. CONCLUSIONS 

An analytical solution is obtained for the one- and 
two-dimensional transient temperature distributions 

in a finite-length moving cylinder/plate subjected to a 
known heat transfer coefficient at the surface. The 
results are obtained in terms of a series solution, 
involving integrals. A root solving method is used to 
obtain the roots required in the series solution, while 
numerical integration is used to determine the 
coefficients. It has been found that a finite number of 
terms can be used for obtaining the analytical 
solution, with reasonable accuracy. In particular, 25 
terms for the two-dimensional problems were found 
to be sufficient. For the one-dimensional problem, 
the ‘pseudo-transient’ part. which consists of a series 
solution, is almost negligible at large time, while, for 
small time, employing 20 terms for the ‘pseudo-trans- 
ient’ part of the solution was found to be sufficient. 
Also, the analytical solution, derived as a combination 
of ‘pseudo-steady’ and ‘pseudo-transient’ parts, was 

found to be dominated by the former, with the latter 
part being almost negligible. This indicates why the 
numerical solutions that assume a quasi-steady 
behavior yield accurate results at large time. A com- 
parison between the analytical results and the numeri- 
cal results obtained earlier showed excellent agree- 

ment. It is concluded that the numerical solution is 
much easier to implement. Also, in the case of a real 
life problem, when the heat transfer coefficient at the 
surface or the end of the material is not known, the 
full, conjugate problem must be solved numerically 
for both the fluid and the solid to obtain the tem- 
perature distribution in the moving material. 
However, the analytical solution is valuable, because 
it provides a means of validating the numerical 
schemes for similar problems. Also, the analytical 
solution can be used to obtain an accurate tem- 
perature distribution near the slot, especially at small 
time, which the numerical solutions generally fail to 

provide. 
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